SpringerOpen Newsletter

Receive periodic news and updates relating to SpringerOpen.

Open Access Research Article

Application-Specific Instruction Set Processor Implementation of List Sphere Detector

Juho Antikainen1*, Perttu Salmela2, Olli Silvén1, Markku Juntti1, Jarmo Takala2 and Markus Myllylä1

Author Affiliations

1 Information Processing Laboratory and Centre for Wireless Communications, University of Oulu, Oulu 90014, Finland

2 Institute of Digital and Computer Systems, Tampere University of Technology, Tampere 33101, Finland

For all author emails, please log on.

EURASIP Journal on Embedded Systems 2007, 2007:054173  doi:10.1155/2007/54173


The electronic version of this article is the complete one and can be found online at: http://jes.eurasipjournals.com/content/2007/1/054173


Received:8 June 2007
Revisions received:18 October 2007
Accepted:12 November 2007
Published:8 January 2008

© 2007 Antikainen et al.

This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Abstract

Multiple-input multiple-output (MIMO) technology enables higher transmission capacity without additional frequency spectrum and is becoming a part of many wireless system standards. Sphere detection has been introduced in MIMO systems to achieve maximum likelihood (ML) or near-ML estimation with reduced complexity. This paper reviews related work on sphere detector implementations and presents an application-specific instruction set processor (ASIP) implementation of K-best list sphere detector (LSD) using transport triggered architecture (TTA). The implementation is based on using memory and heap data structure for symbol vector sorting. The design space is explored by presenting several variations of the implementation and comparing them with each other in terms of their latencies and hardware complexities. An early proposal for a parallelized architecture with a decoding throughput of approximately 5.3 Mbps is presented

References

  1. IE Telatar, Capacity of multi-antenna gaussian channels. Internal Technical Memorandum (Bell Laboratories, Suffolk, UK, 1995), pp. 1–28

  2. E Telatar, Capacity of multi-antenna gaussian channels. European Transactions Telecommunication 10, 585–595 (1999). Publisher Full Text OpenURL

  3. GJ Foschini, MJ Gans, On limits of wireless communications in a fading environment when using multiple antennas. Wireless Personal Communications 6(3), 311–335 (1998). Publisher Full Text OpenURL

  4. PW Wolniansky, GJ Foschini, GD Golden, RA Valenzuela, V-BLAST: an architecture for realizing very high data rates over the rich-scattering wireless channel. Proceedings of the International Symposium on Signals, Systems and Electronics, (ISSSE '98), 1998, Pisa, Italy, 295–300

  5. D Gesbert, M Shafi, D Shiu, PJ Smith, A Naguib, From theory to practice: an overview of MIMO space-time coded wireless systems. IEEE Journal on Selected Areas in Communications 21(3), 281–302 (2003). Publisher Full Text OpenURL

  6. AJ Paulraj, DA Gore, RU Nabar, H Bölcskei, An overview of MIMO communications—a key to gigabit wireless. Proceedings of the IEEE 92(2), 198–217 (2004). Publisher Full Text OpenURL

  7. H Boelcskei, D Gesbert, CB Papadias, AJ van der Veen, Space-Time Wireless Systems: From Array Processing to MIMO Communications (Cambridge University Press, Cambridge, UK, 2006)

  8. M Myllylä, JM Hintikka, J Cavallaro, M Juntti, M Limingoja, A Byman, Complexity analysis of MMSE detector architectures for MIMO OFDM systems. Conference Record—Asilomar Conference on Signals, Systems and Computers, 2005, Pacific Grove, Calif, USA 2005, 75–81 PubMed Abstract OpenURL

  9. H Artés, D Seethaler, F Hlawatsch, Efficient detection algorithms for MIMO channels: a geometrical approach to approximate ML detection. IEEE Transactions on Signal Processing 51(11), 2808–2820 (2003). Publisher Full Text OpenURL

  10. GD Golden, CJ Foschini, RA Valenzuela, PW Wolniansky, Detection algorithm and initial laboratory results using V-BLAST space-time communication architecture. Electronics Letters 35(1), 14–16 (1999). Publisher Full Text OpenURL

  11. U Fincke, M Pohst, Improved methods for calculating vectors of short length in a lattice, including a complexity analysis. Mathematics of Computation 44, 463––471 (1985). Publisher Full Text OpenURL

  12. O Damen, A Chkeif, JC Belfiore, Lattice code decoder for space-time codes. IEEE Communications Letters 4(5), 161–163 (2000). Publisher Full Text OpenURL

  13. H Yao, GW Wornell, Lattice-reduction-aided detectors for MIMO communication systems. Proceedings of the IEEE Global Telecommunications Conference, 2002, Taipei, Taiwan 1, 424–428

  14. D Wübben, R Böhnke, V Kühn, K Kammeyer, Near-maximum-likelihood detection of MIMO systems using MMSE-based lattice-reduction. Proceedings of the IEEE International Conference on Communications, 2004, Paris, France 2, 798–802

  15. MO Damen, H El Gamal, G Caire, On maximum-likelihood detection and the search for the closest lattice point. IEEE Transactions on Information Theory 49(10), 2389–2402 (2003). Publisher Full Text OpenURL

  16. P Silvola, K Hooli, M Juntti, Sub-optimal soft-output MAP detector with lattice reduction. IEEE Signal Processing Letter 13, 321––324 (2006). Publisher Full Text OpenURL

  17. BM Hochwald, S Ten Brink, Achieving near-capacity on a multiple-antenna channel. IEEE Transactions on Communications 51(3), 389–399 (2003). Publisher Full Text OpenURL

  18. YLC de Jong, TJ Willink, Iterative tree search detection for MIMO wireless systems. IEEE Transactions on Communications 53(6), 930–935 (2005). Publisher Full Text OpenURL

  19. JW Kang, KB Lee, Simplified ML detection scheme for MIMO systems. Proceedings of the IEEE Vehicular Technology Conference, 2004, Milan, Italy 2, 824–827

  20. B Hassibi, H Vikalo, On the sphere-decoding algorithm I. expected complexity. IEEE Transactions Signal Processing 53, 2806–2818 (2005). Publisher Full Text OpenURL

  21. H Vikalo, B Hassibi, On the sphere-decoding algorithm II. generalizations, second-order statistics, and applications to communications. IEEE Transactions Signal Processing 53, 2819––2834 (2005). Publisher Full Text OpenURL

  22. DC Garrett, LM Davis, GK Woodward, 19.2 Mbit/s 4×4 BLAST/MIMO detector with soft ML outputs. Electronics Letters 39(2), 233–235 (2003). Publisher Full Text OpenURL

  23. A Burg, M Borgmann, M Wenk, M Zellweger, W Fichtner, H Bölcskei, VLSI Implementation of MIMO detection using the sphere decoding algorithm. IEEE Journal of Solid-State Circuits 40(7), 1566–1576 (2005). Publisher Full Text OpenURL

  24. D Garrett, L Davis, S Ten Brink, B Hochwald, G Knagge, Silicon complexity for maximum likelihood MIMO detection using spherical decoding. IEEE Journal of Solid-State Circuits 39(9), 1544–1552 (2004). Publisher Full Text OpenURL

  25. D Garrett, GK Woodward, L Davis, C Nicol, A 28.8 Mbit/s 4×4 MIMO 3G CDMA receiver for frequency selective channels. IEEE Journal of Solid-State Circuits 40, 320–3302 (2005). Publisher Full Text OpenURL

  26. Z Guo, P Nilsson, Algorithm and implementation of the K-best sphere decoding for MIMO detection. IEEE Journal on Selected Areas in Communications 24(3), 491–503 (2006). Publisher Full Text OpenURL

  27. K Wong, C Tsui, RK Cheng, W Mow, A VLSI architecture of a K-best lattice decoding algorithm for MIMO channels. Proceedings of the IEEE International Symposium on Circuits and Systems, 2002, Scottsdale, Ariz, USA 3, 273–276

  28. C Schlegel, L Prez, Trellis and Turbo Coding (Wiley IEEE Press, Piscataway, NJ, USA, 2004)

  29. WG Jeon, KH Chang, YS Cho, Instrumentable tree encoding of information sources. IEEE Transactions on Information Theory 17(1), 118–119 (1971). Publisher Full Text OpenURL

  30. J Anderson, S Mohan, Source and channel coding: an algorithmic approach. IEEE Transactions on Communications 32, 169–176 (1984). Publisher Full Text OpenURL

  31. H Corporaal, Microprocessor Architectures: From VLIW to TTA (John Wiley & Sons, New York, NY, USA, 1998)

  32. H Corporaal, Design of transport triggered architectures. Proceedings of the 4th Great Lakes Symposium on (VLSI '94), 1994, Notre Dame, Ind, USA, 130–135

  33. H Corporaal, A different approach to high performance computing. Proceedings of the 4th International Conference on High Performance Computing, 1997, Bangalore, India, 22––27

  34. J Antikainen, P Salmela, O Silvén, M Juntti, J Takala, M Myllylä, Transport triggered architecture implementation of list sphere detector. Proceedings of the Finnish Signal Processing Symposium, August 2007, Oulu, Finland

  35. J Antikainen, P Salmela, O Silvén, M Juntti, J Takala, M Myllylä, Application-specific instruction set processor implementation of list sphere detector. Proceedings of the 39th Annual Asilomar Conference on Signals, Systems Composition, 2007, Pacific Grove, Calif, USA

  36. 3rd Generation Partnership Project, Group radio access network requirements for evolved UTRA (E-UTRA) and evolved UTRAN (E-UTRAN). in Technical Specification TR 25, ed. by . 913 version 7.3.0 (release 7) (3rd Generation Partnership Project, Valbonne, France, 2006)

  37. T Fujita, T Onizawa, W Jiang, D Uchida, T Sugiyama, A Ohta, A new signal detection scheme combining ZF and K-best algorithms for OFDM/SDM. Proceedings of the IEEE International Symposium on Personal, Indoor and Mobile Radio Communications, (PIMRC '04), 2004 4, 2387–2391

  38. M Myllylä, P Silvola, M Juntti, JR Cavallaro, Comparison of two novel list sphere detector algorithms for MIMOOFDM systems. Proceedings of the IEEE International Symposium Personal, Indoor, Mobile Radio Communications, September 2006, Helsinki, Finland, 12–16

  39. M Wenk, M Zellweger, A Burg, N Felber, W Fichtner, K-best MIMO detection VLSI architectures achieving up to 424 Mbps. Proceedings of the IEEE International Symposium on Circuits and Systems, 2006, Kos, Greece, 1151–1154

  40. J Kerttula, in Implementation of a K-best based multiple antenna detector, M, ed. by . S. thesis (Department of Electrical and Information Engineering, University of Oulu, Oulu, Finland, 2007)

  41. J Kerttula, M Myllylä, M Juntti, Implementation of a K-best based MIMO-OFDM detector algorithm. Proceedings of the European Signal Proccessing Conference, 2007, Poznán, Poland

  42. J Janhunen, in Signal processor implementation of list sphere detection, M, ed. by . S. thesis (Department of Electrical and Information Engineering, University of Oulu, Oulu, Finland, 2007)

  43. J Janhunen, O Silvèn, M Myllylä, M Juntti, A DSP implementation of a K-best list sphere detector algorithm. Proceedings of the Finnish Signal Processing Symposium, 2007, Oulu, Finland, 6

  44. A Wiesel, X Mestre, A Pags, JR Fonollosa, Efficient implementation of sphere demodulation. Proceedings of the IEEE Workshop on Signal Processing Advances in Wireless Communications, June 2003, Rome, Italy, 36–40

  45. B Widdup, G Woodward, G Knagge, A highlyparallel VLSI architecture for a list sphere detector. Proceedings of the IEEE International Conference on Communications, June 2004, Paris, France, 2720––2725

  46. P Salmela, J Antikainen, O Silvén, J Takala, Memory-based list updating for list sphere decoders. Proceedings of the IEEE Workshop on Signal Processing Systems (SiPS '07), 2007, Shanghai, China, 633––638